Boundaries of VP and VNP

نویسندگان

  • Joshua A. Grochow
  • Ketan Mulmuley
  • Youming Qiao
چکیده

One fundamental question in the context of the geometric complexity theory approach to the VP vs. VNP conjecture is whether VP = VP, where VP is the class of families of polynomials that can be computed by arithmetic circuits of polynomial degree and size, and VP is the class of families of polynomials that can be approximated infinitesimally closely by arithmetic circuits of polynomial degree and size. The goal of this article is to study the conjecture in (Mulmuley, FOCS 2012) that VP is not contained in VP. Towards that end, we introduce three degenerations of VP (i.e., sets of points in VP), namely the stable degeneration Stable-VP, the Newton degeneration Newton-VP, and the p-definable one-parameter degeneration VP*. We also introduce analogous degenerations of VNP. We show that Stable-VP ⊆ Newton-VP ⊆ VP* ⊆ VNP, and Stable-VNP = Newton-VNP = VNP* = VNP. The three notions of degenerations and the proof of this result shed light on the problem of separating VP from VP. Although we do not yet construct explicit candidates for the polynomial families in VP \VP, we prove results which tell us where not to look for such families. Specifically, we demonstrate that the families in Newton-VP \VP based on semi-invariants of quivers would have to be nongeneric by showing that, for many finite quivers (including some wild ones), Newton degeneration of any generic semi-invariant can be computed by a circuit of polynomial size. We also show that the Newton degenerations of perfect matching Pfaffians, monotone arithmetic circuits over the reals, and Schur polynomials have polynomial-size circuits. 1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dichotomy Theorem for Homomorphism Polynomials

In the present paper we show a dichotomy theorem for the complexity of polynomial evaluation. We associate to each graph H a polynomial that encodes all graphs of a fixed size homomorphic to H . We show that this family is computable by arithmetic circuits in constant depth if H has a loop or no edge and that it is hard otherwise (i.e., complete for VNP, the arithmetic class related to #P ). We...

متن کامل

Almost Cubic Bound for Depth Three Circuits in VP

In "An almost Cubic Lower Bound for Depth Three Arithmetic Circuits", [KST16] present an infinite family of polynomials in VNP, {Pn}n∈Z+ on n variables with degree n such that every ∑∏∑ circuit computing Pn is of size Ω̃(n3). A similar result was proven in [BLS16] for polynomials in VP with lower bound Ω ( n3 2 p logn ) . We present a modified polynomial and perform a tighter analysis to obtain ...

متن کامل

VNP=VP in the multilinear world

In this note, we show that over fields of any characteristic, exponential sums of Boolean instantiations of polynomials computed by multilinear circuits can be computed by multilinear circuits with polynomial blow-up in size. In particular, multilinear-VNP equals multilinear-VP. Our result showing closure under exponential sums also holds for other restricted multilinear classes – polynomials c...

متن کامل

Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

Tavenas has recently proved that any nO(1)-variate and degree n polynomial in VP can be computed by a depth-4 ΣΠ[O( p n)]ΣΠ[ p n] circuit of size 2O( p n log n) [Tav13]. So to prove VP 6= VNP, it is sufficient to show that an explicit polynomial ∈ VNP of degree n requires 2ω( p n log n) size depth-4 circuits. Soon after Tavenas’s result, for two different explicit polynomials, depth-4 circuit s...

متن کامل

Homomorphism Polynomials Complete for VP

The VP versus VNP question, introduced by Valiant, is probably the most important open question in algebraic complexity theory. Thanks to completeness results, a variant of this question, VBP versus VNP, can be succinctly restated as asking whether the permanent of a generic matrix can be written as a determinant of a matrix of polynomially bounded size. Strikingly, this restatement does not me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016